
Détection rapide des résistances bactériennes

DUACAI 18 février 2021

Dr. Caroline Loïez

Les bases du diagnostic bactériologique

Techniques classiques parfois trop longues

Antibiogrammes en routine

Méthodes phénotypiques vs génotypiques

Avantages

- Rendu du résultat en catégorie clinique S, I, R
- Appréciation du niveau d'expression
- Détection de nouveaux mécanismes
- Faible coût

□ Inconvénients

- Nécessite une culture pure
- Délai : 24-48H
- Antibiothérapie probabiliste parfois non adaptée
- Problème de détection de certaines résistances

Avantages

- Peut-être réalisée sur tout type de prélèvement parfois sans culture préalable
- Possibilité d'une réponse rapide < 2 heures
- Antibiothérapie adaptée précoce

□ Inconvénients

- On ne détecte que ce que l'on connaît
- Réponse : présence ou absence
- On ne détecte pas le niveau d'expression (sauf quantification des ARNm)
- Coût variable mais > méthode phénotypique
- Faux négatifs : variabilité génique
- Faux positifs : ADN ≠ INFECTION

□ Délai

- Meilleure prise en charge du patient (isolement, traitement)
- Diminution du coût de l'antibiothérapie, des complications
- Bactéries à croissance difficile (*M.tuberculosis*,
 H. pylori)

Efficacité

- Détection des SARM, des ERV, β-lactamases
- Mécanisme de résistance (épidémiologie)
 - β-lactamases

Méthodes génotypiques

Phénotype ≠ Génotype

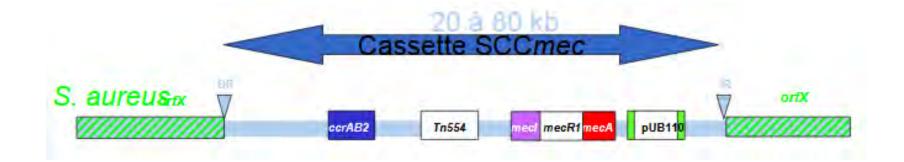
Attention : **l'information génétique n'est pas suffisante**Interaction entre les gènes (sensibilité aux ATB) nécessite une analyse simultanée du phénotype

Pourquoi être plus rapide?

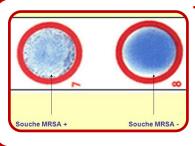
- Collectif : Repérer les patients colonisés à BMR
- Individuel : Adapter le plus rapidement possible le traitement antibiotique au microorganisme en cause pour permettre
 - Diminution de la mortalité
 - Prévention de l'émergence de <u>résistance aux ATB</u>
 - Diminution de la durée d'hospitalisation

Inappropriate Initial Antimicrobial Therapy and Its Effect on Survival in a Clinical Trial of Immunomodulating Therapy for Severe Sepsis

Stephan Harbarth, MD, MS, Jorge Garbino, MD, Jérome Pugin, MD, Jacques A. Romand, MD, Daniel Lew, MD, Didier Pittet, MD, MS


Am J Med. 2003 Nov;115(7):529-35.

Résistance à la méticilline : SARM



Résistance due à l'acquisition d'une PLP additionnelle PLP2a,

- → codé par le gène mecA inclus dans un élément génétique mobile la cassette SCCmec
- → expression hétérogène
- → mauvaise affinité pour les β -lactamines (résistance croisée)

Détection phénotypique des SARM

Test Latex: technique d'agglutination

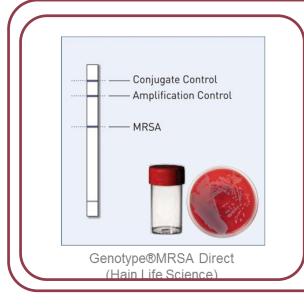
- Principe: agglutination latex-anticorps monoclonaux anti-PLPL2a
- A partir des colonies isolées
- Délai : 5 min
- Avantages : Test simple, rapide, non onéreux
- Limites : manque de sensibilité et de spécificité

Test PBP2a: technique immunochromatographique

- Principe: bandelettes avec Ac anti-PLP2a
- A partir des colonies isolées
- Délai : 5 min
- · Avantages : test simple, rapide, coût raisonnable
- Limites : nécessité d'une induction par une β-lactamine

Test BinaxNow®: technique immunochromatographique

- Principe: carte avec Ac anti-PLP2a / Ac Staphylocoque
- A partir des hémocultures directement
- Délai : 30 min
- Avantages : test simple, rapide,
- Limites : coût et lourdeur technique et organisationnelle



Milieux chromogènes

- Principe : **Milieu chromogénique sélectif** contenant des **substrats chromogènes** permettant la coloration des colonies à la suite de sa dégradation par des enzymes bactériennes spécifiques et de la libération du chromophore, et des **antibiotiques**.
- A partir du prélèvement
- Délai : 18-24 heures
- Avantages : test simple, onéreux
- Limites : ne présume pas toujours du mécanisme de résistance en cause

Détection génotypique des SARM

Technique d'hybridation

 Principe: utilisation de bandelettes avec sondes biotinylées permettant la détection d'un fragment spécifique du SARM combiné à la détection des SCCmec de type I-IV

- A partir des colonies et/ou du prélèvement
- Délai : 4 heures
- Limites : test lourd et coûteux
- Nécessité d'un inoculum suffisant quand sur les prélèvements

Techniques moléculaires

 Principe : mise en évidence du support génétique (mecA et SSCmec)

- A partir des colonies et/ou du prélèvement et/ou hémocultures
- Délai : 1 heure
- Avantages : test simple, rapide, sensible
- Limites : coût (attention : mélange bactérien)

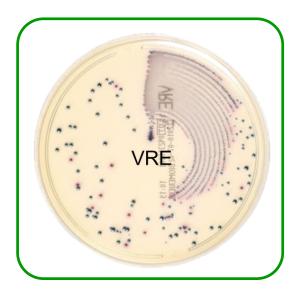
Résistance à la vancomycine : ERV

Résistance due à une modification de la cible (modification enzymatique du site de fixation du glycopeptide

- → synthèse de précurseurs du peptidoglycane de faible affinité (DAIa-DLacPP ou DaIa-DSerPP au lieu de DaIa-DAIaPP)
- → élimination des précurseurs de faible affinité

Résistance	Acquise					Intrinsèque
Resistance	Haut niveau	Niveau variable	Niveau moyen	Bas niveau		Bas niveau
Type CMI (mg/L)	VanA	VanB	VanD	VanG	VanE	VanC1/C2/C3
Vancomyci	ne 64 - 1000	4 - 1000	64 - 128	16	8-32	2 - 32
Teicoplanii	ne 16 - 512	0,5 - 1	4 - 64	0,5	0,5	0,5 - 1
Espèce	E. faecium E. faecalis E. gallinarus E. casseliflas E. avium E. durans E. mundtü E. raffinosus	vus	E. faecium E. faecalis	E. faecalis	E. faecalis	E. gallinarum E. casseliflavus E. flavescens
Expression		ductible nstitutive)	Constitutive	Inductible	Inductible Constitutive	Constitutive Inductible
Cible modifiée	D-Ala-D-Lac		b-Ala-D-Ser			

- vanA, B, D, G, E, C
 - plasmidique (*van*A, *van*B)
 - chromosomique (vanC)


→ codé par les gènes *van* :

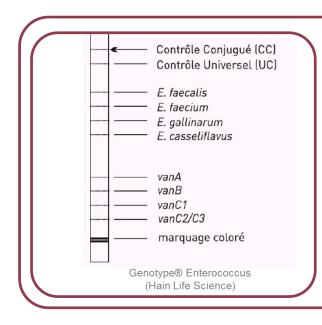
P. Courvalin 2004

Détection phénotypique des ERV

- Principe: Milieu chromogénique sélectif contenant des substrats chromogènes permettant la coloration des colonies à la suite de sa dégradation par des enzymes bactériennes spécifiques et de la libération du chromophore, et des antibiotiques.
 - bleu-vert = E. faecalis
 - violet = E. faecium

Milieu contenant 8 mg/l de vancomycine et 2 substrats α-glucosidase et β-galactosidase d'où inhibition de la croissance des entérocoques naturellement résistants et de bacilles à Gram négatif)

A partir du prélèvement


• Délai : 18-24 heures

Avantages : test simple

• Limites : test onéreux

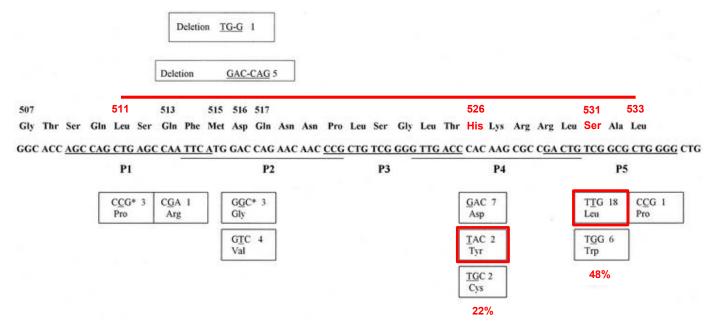
Détection génotypique des ERV

Technique d'hybridation

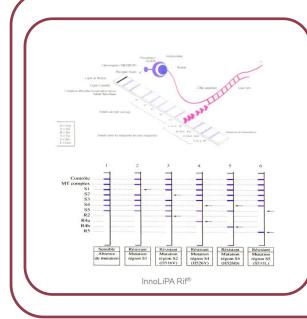
- Principe:
 - extraction d'ADN à partir des cultures
 - · amplification avec des amorces biotinylées
 - Hybridation sur bandelettes
 - Révélation colorimétrique (streptavidine PAL + substrat)
- · A partir des colonies
- Délai : < 5 heures
- Limites : test lourd et coûteux

Techniques moléculaires

- Principe : mise en évidence du support génétique (vanA et vanB)
- A partir des colonies et/ou du prélèvement de dépistage
- Délai : 45 min
- Limites : test simple, rapide mais coûteux
- Attention : présence du gène vanB chez d'autres bactéries



Résistance à la rifampicine : M. tuberculosis



Résistance liée à :

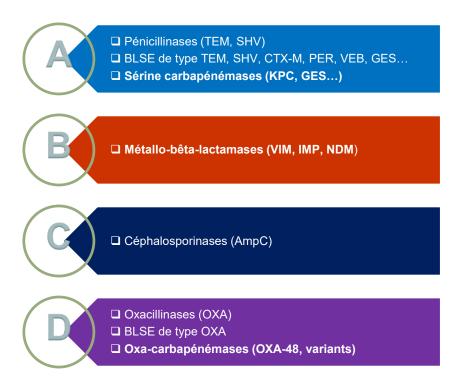
- des mutations ponctuelles dans la région 507-533 du gène rpoB codant la sous-unité β de l'ARN polymérase : Ser531Leu et His526Tyr (93 % entre les codons 511 et 533)
- des petites insertions et des délétions
- → modification de l'enzyme, diminuant ainsi la fixation ou l'accessibilité de la rifampicine, et sont associées à un haut niveau de résistance.
- > 90% des souches RIF-R sont résistants à l'isoniazide.
- La détection de la résistance à la rifampicine est donc un marqueur pour la détection des souches MDR.

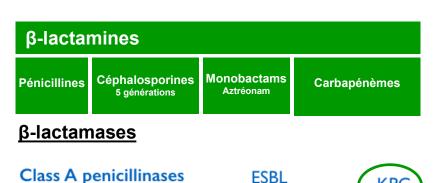
Détection génotypique des MDR

Technique d'hybridation

- Principe : Principe du reverse dot-blot
 Les produits d'amplification marqués à la biotine sont hybridés avec
 des oligonucléotides spécifiques, immobilisés sur une membrane de
 nitrocellulose. Les hybrides ainsi formés sont détectés par méthode
 colorimétrique.
- A partir des colonies et/ou du prélèvement dont l'ED est très positif
- · Délai : 4 heures
- Avantage : détection rapide et facile des mutations les plus fréquentes du gène rpoB
- Limites: test lourd, coûteux qui ne détecte que les mutations connues Faux positifs

Techniques moléculaires




- Principe : mise en évidence du support génétique rpoB
- A partir des colonies et/ou du prélèvement (crachat)
- Délai : 1 heure
- Limites : test simple, rapide mais coûteux (attention : mélange bactérien)

Résistance aux carbapénèmes : EPC

Classification d'Ambler

ESBL

KPC

Class C cephalosporinases

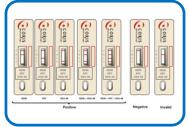
Class B metallo-enzymes

Class D oxacillinases

Détection phénotypique des EPC

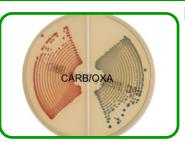
β CARBA Test : technique colorimétrique

- Principe : test d'hydrolyse des carbapénèmes
- A partir des colonies isolées
- Délai: 10 min
- Avantages : test simple, rapide, non onéreux
- Limites: parfois couleur douteuse



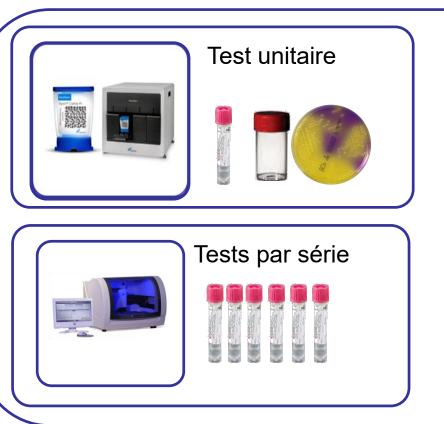
Test RAPIDEC Carba NP: technique colorimétrique (valable pour P.aeruginosa)

- Principe : Détection de l'acidification (virage indicateur coloré) liée à l'hydrolyse de l'imipéneme par les carbapénémases → identification des carbapénémases (A, B et D)
- A partir des colonies isolées
- Délai: 30 min à 2 h
- Avantages: test rapide, se / spe = 97,8%
- Limites: lecture parfois difficile



Test Coris: technique immunochromatographique

- Principe : détection avec des anticorps monoclonaux
- Directement à partir des colonies
- Délai : 5-10 minutes
- Avantage: test simple, rapide



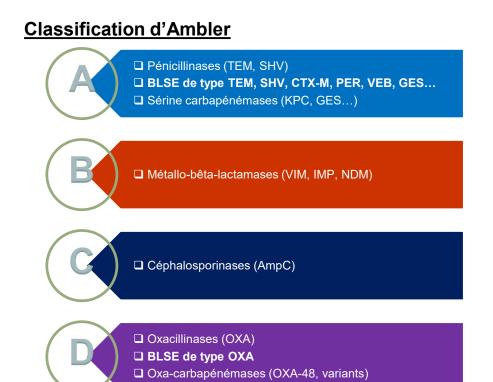
Milieux chromogènes

- Principe : Milieu chromogénique sélectif contenant des substrats chromogènes permettant la coloration des colonies à la suite de sa dégradation par des enzymes bactériennes spécifiques et de la libération du chromophore, et des antibiotiques.
- A partir du prélèvement
- Délai: 18-24 heures
- Limites: Test simple, +/- onéreux

Détection génotypique des EPC

Techniques moléculaires

Principe: mise en évidence du support génétique = KPC, NDM, VIM, IMP-1, OXA-48 et variants (y compris OXA-181 & OXA-232)


- A partir des colonies et/ou du prélèvement de dépistage
- Délai : 1 heure
- Limites : test simple, rapide mais coûteux


Résistance aux β -lactamines : E-BLSE

Résistance due à la production de β -lactamases

(enzymes capables d'hydrolyser le cycle β -lactam)



Détection phénotypique des E-BLSE

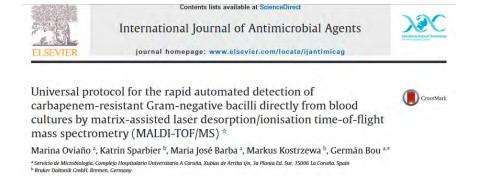
Milieux chromogènes

- Principe: Milieu chromogénique sélectif contenant des substrats chromogènes permettant la coloration des colonies à la suite de sa dégradation par des enzymes bactériennes spécifiques et de la libération du chromophore, et des antibiotiques (dont le cefpodoxime).
 - → Isolement et identification des micro-organismes cibles en une seule étape, ce qui permet de raccourcir le temps de rendu du résultat
 - Escherichia coli:
 Coloration rose à bordeaux des souches productrices de ß-glucuronidase
 - Proteae (Proteus, Providencia, Morganella):
 Coloration brune à marron des souches exprimant une désaminase.
 - Klebsiella, Enterobacter, Serratia, Citrobacter (KESC):
 Coloration vert / bleu à vert-brun des souches productrices de ß-glucosidase
 - Inhibition sélective des bactéries Gram positif et des levures
 - Le caractère BLSE doit être vérifié par la technique de synergie dite "en bouchon de champagne"
- · A partir du prélèvement
- Délai : 18-24 heures
- Limites : Test simple, onéreux
- mais ne présume pas toujours du mécanisme de résistance en cause

Synthèse

	A partir des écouvillons de dépistage	A partir des prélèvements	A partir des flacons d'HC positifs	A partir des colonies
SARM	Milieux chromogènes	Milieux chromogènes	Milieux chromogènes	Agglutination
	Biologie moléculaire	Biologie moléculaire	Immuno chromatographie	Immuno chromatographie
		Hybridation	Biologie moléculaire	Hybridation
ERV	Milieux chromogènes	Milieux chromogènes	Milieux chromogènes	Hybridation Hybridation
	Biologie moléculaire			Biologie moléculaire
EPC	Milieux chromogènes	Milieux chromogènes	Milieux chromogènes	Colorimétrie
	Biologie moléculaire			Immuno chromatographie
				Biologie moléculaire
E-BLSE	Milieux chromogènes	Milieux chromogènes	Milieux chromogènes	
M. tuberculosis		Hybridation NNG-LIFE- RESTE		Hybridation INNOLIPS - RE-TR
A CONTRACTOR		Biologie moléculaire		Biologie moléculaire

T0 T12-15 h T18-24 h


Détection phénotypique multiple

Technique qui va probablement se développer

MALDI-TOF

- Principe : Recherche d'une modification du spectre d'un antibiotique
 - → après mise en contact pendant quelques heures de la souche à tester avec une solution d'antibiotique, mise en évidence de la disparition du pic correspondant à cet antibiotique et de l'apparition d'un pic correspondant au(x) produit(s) d'hydrolyse de ce même antibiotique.
- A partir de la souche ou directement d'un prélèvement
- Délai : 2-3 heures
- Avantages : peu coûteux si on dispose déjà de l'instrument
- · Limites : Test nécessitant une mise au point fine

Approche syndromique : PCR automatisée multiplex

Accessible à tous les laboratoires, quel que soit le personnel

FilmArray® (bioMérieux)

- Principe : détection de cibles d'acides nucléiques multiples : 16 à 27 cibles en fonction des panels (bactéries, parasites, virus et marqueurs de résistance)
- A partir des hémocultures positives
- Délai : 1 h environ (2 min de préparation)
- Avantages : test unitaire, totalement automatisé
- Limites : coût 100-150 € / test + coût instrument (50k€)

1 test. 27 pathogènes et gènes de résistance. Résultats en 1 heure environ

Unyvero® (Curetis)

- Principe : détection de cibles d'acides nucléiques multiples : 30aine de cibles en fonction des panels (bactéries, levures, virus et marqueurs de résistance)
- A partir des prélèvements (hémocultures, pulmonaires, abdominaux, matériel et tissus)
- Délai : 5h environ
- Avantages : test unitaire
- Limites : coût 270 € / test + coût instrument

GROUP	PATHOGEN	GENE	RESISTANCE	
Gram-positive bacteria	Staphylococcus aureus	ctx-M	3rd generation Cep	
	Streptococcus pneumoniae	emB	Macrolide/Lincosa	
Enterobacteriaceae	Citrobacter freundii	imp	Carbapenem	
	Escherichia coli	kpc	Carbapenem	
	Enterobacter cloacae complex	mecA	Oxacillin	
	Enterobacter aerogenes	mecC	Oxacillin	
	Proteus spp.	ndm	Carbapenem	
	Klebsiella pneumoniae	оха-23	Carbapenem	
	Klebsiella oxytoca	oxa-24	Carbapenem	
	Klebsiella variicola	оха-48	Carbapenem	
	Serratia marcescens	oxa-58	Carbapenem	
	Morganella morganii	shv	Penicillin	
Non-fermenting bacteria	Moraxella catarrhalis	sul1	Sulfonamide	
	Pseudomonas aeruginosa	tem	Penicillin	
	Acinetobacter baumannii complex	vim	Carbapenem	
	Stenotrophomonas maltophilia	gyrA83	Fluoroquinolone	
	Legionella pneumophila	gyrA87	Fluoroquinolone	
Others / Fungi	Pneumocystis jirovecii			
	Haemophilus influenzae			

Mycoplasma pneumoniae

Limites des techniques moléculaires

- Culture = technique de référence pour la plupart des bactéries
 - → accès aux souches
 - sensibilité aux antibiotiques
 - données épidémiologiques
 - mise en évidence de nouveaux mécanismes de résistance
- □ Validation **technique** = de plus en plus facile
 - Développement des kits commerciaux marqués CE-IVD +++
 - Accessible à tous : plus de nécessité d'un personnel dédié et qualifié
 - □ Problème de coût
- □ Validation clinique = problème d'interprétation
 - □ la présence d'ADN n'est pas synonyme de présence de bactéries vivantes
 - □ la présence du gène ne signifie pas que ce gène s'exprime
 - → importance de la relation bio-clinique
- □ Coût +++ ↔ Indications limitées (mais développement des approches syndromiques)
 - Sepsis
 - Méningites
 - Dépistage BMR ...

Domaines d'applications

Obtenir dans un délai bref

un diagnostic de quasi-certitude ou d'exclusion d'une colonisation. dans une situation épidémiologique particulière

- > Isolement rapide des patients porteurs de BMR
- > Levée d'isolement plus rapide des patients non porteurs de BMR
- > Gestion des épidémies / Limiter la propagation de la résistance bactérienne
- > Décolonisation des patients SARM

A visée thérapeutique

Gain pronostique pour les

patients

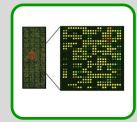
- Impact économique
- Impact clinique

- > Adaptation de l'antibiothérapie probabiliste en fonction de la présence ou non d'un gène de résistance
- > Epargne thérapeutique

SARM **EPC ERV**

A visée épidémiologique

Conclusion



□ En routine = association des différents outils

- détection rapide des SARM dans le dépistage nasal
- détection rapide des E-BLSE et des EPC dans le dépistage anal
- détection des ERV dans le dépistage anal
- détection rapide des carbapénèmases à partir des souches isolées (plusieurs outils)
- détection rapide de la résistance à la rifampicine à partir des crachats (ED +)

□ En développement

- détection des résistances enzymatiques sur MALDI-TOF
- antibiogramme par génotypage
- □ détection génotypique des E-BLSE (puces→ problème : coût +++)

ON NE PEUT DETECTER RAPIDEMENT que :

- ✓ la résistance à un antibiotique
- ✓ le support de résistance

JAMAIS, on ne pourra affirmer la sensibilité à un antibiotique avec les tests rapides actuels

PROBLEME PRINCIPAL: le coût +++

Nécessité de cibler certains patients dans certains services : réanimation...

Nécessité d'évaluations médico-économiques