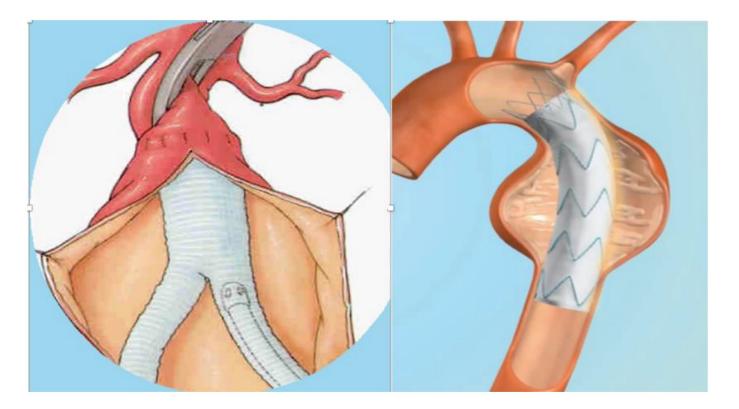
Infections de prothèses vasculaires

Rémi Le Guern



Prothèses vasculaires

Figure 1. Vascular graft and vascular endograft. On the (**left**): vascular graft; on the (**right**): vascular endograft.

Infections de prothèse vasculaire

Rare (1 à 6%)

Dépend de la localisation:

- si limité à l'abdomen (intracavitaire, ex. pontage aortique sous rénal) < 1%
- si descend en fémoral (extracavitaire, ex. pontage aortofémoral) = 1 à 2%
- pontage infra-inguinal = 6%

 Legout et al.

 MMI 2012

Morbidité élevée (surtout **amputation** +++) = 41% **Mortalité élevée** = 17%

Legout et al. CMI 2011

Survie moyenne à 5 ans = 50%

Physiopathologie

Plusieurs possibilités pour infecter prothèse vasculaire:

- 1. au moment de la pose ou dans la période péri-opératoire
- 2. par contiguïté si infection dans un territoire adjacent (ex. infection du site opératoire, abcès intra-abdominal, abcès pelvien)
- 3. manipulation de la prothèse (voie chirurgicale ou percutanée)
- 4. bactériémie (même si porte entrée à distance)
 - pour bactériémie: surtout 2 premiers mois (après 2 mois on a une endothélialisation partielle)

Facteurs de risque

- Chirurgie en urgence
- Antibioprophylaxie inappropriée
- Voie d'abord inguinale
- Bactériémie pendant hospitalisation
- Plusieurs interventions invasives avant pose de prothèse vasculaire
- Mauvaise cicatrisation du site opératoire
- Infection contiguë (à côté de la prothèse)
- Comorbidités (diabète, insuffisance rénale chronique, obésité, immunodépression)

Facteurs de risque

Table 1. Risk factors for vascular graft infections: adapted from Chakfe et al. and Anagnostopoulos et al. [4,13]

Preoperative

Prolonged preoperative hospitalization

Remote or adjacent site infection

Percutaneous arterial access

Emergency/urgent procedure

Re-operation/intervention

Lower limb infection (ulcer, gangrene, cellulitis)

Groin incision

Inadequate perioperative antimicrobial prophylaxis

Intraoperative

Breach in sterility

Prolonged operation/intervention time

Concomitant gastrointestinal or genitourinary procedure

Postoperative

Postoperative wound complications

Graft thrombosis

Patient-specific

Malnutrition

Diabetes mellitus/perioperative hyperglycemia

Chronic renal insufficiency/end-stage renal disease

Malignancy

Liver disease/cirrhosis

Lymphoproliferative disorder

Immune disorders

Medication (corticosteroid, chemotherapy, immunosuppression)

Symptomatologie

Dépend de la localisation

- Fièvre (50-75%)
- Évènements thromboemboliques
- Sepsis / choc septique (surtout si bactérie virulente type S. aureus ou P. aeruginosa)
- Cellulite / abcès en regard de la prothèse vasculaire
- Fistule au niveau cicatrice
- Pseudoanévrysme
- Ischémie / nécrose si occlusion prothèse

Baddour et al. Circulation 2003

Figure 1. Vascular graft site infection in a hemodialysis patient due to methicillin-resistant *S aureus*. The patient suffered bacteremia in addition to focal skin and soft tissue changes at the graft site, including erythema, swelling, warmth, and pain.

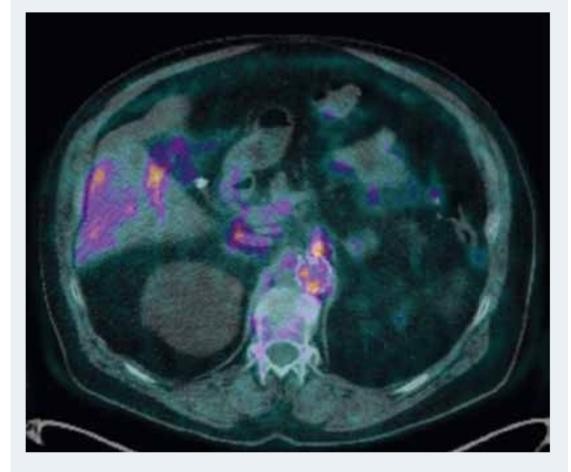
Symptomatologie

 Table 2. Main clinical presentations of VGEI.

District	Clinical Presentation
	- Unexplained fever
	- Severe sepsis
horacic Aorta	 Massive bleeding
noracic Aorta	- Shock
	- Hematemesis
	- Hemoptysis
	- Fever
	- Pain
Abdominal Aorta	- Leukocytosis
Addominal Aorta	- Weight loss
	- Fatigue
	 Generalized weakness
	- Fever
	- Pain
eripheral Arteries	- Mass
	 Redness of the skin
	 Exposed graft
	- Fever
upra-aortic trunks	- Malaise
	- Pain
	- Exposed graft
	- Purulent drainage
	- Sepsis
rosthetic arteriovenous hemodialysis grafts	- Erythema
	- Hemorrhage
	- Hematoma
	- Pain

Costa et al. Prosthesis 2023

Imagerie: TDM



Collection périprothétique signalée par une flèche.

Figure 1. Infection d'une endoprothèse aortique visualisée au scanner.

Imagerie: TEP

Hypermétabolisme focal en avant de l'endoprothèse aortique.

Figure 3. Aspect en TEP d'une IPV aortique.

Revest et al. La lettre de l'infectiologue 2019

Critères diagnostiques

Tableau I. Critères diagnostiques.

IPV certaine	IPV probable	IPV possible
Au moins 2 critères parmi: 1. Présence d'air et/ ou liquide autour du matériel à plus de 2 mois postimplantation 2. Examen direct et/ou culture positive de la prothèse ou des tissus périphériques 3. Présence de pus au contact de la prothèse 4. Exposition de la prothèse au travers d'une plaie ou d'un viscère	 Au moins 2 signes parmi: 1. Fièvre, frissons, hémorragie sur fistule prothétodigestive ou rupture 2. Douleur localisée 3. Érythème ou tuméfaction locale 4. Fistule productive 5. Non-intégration de la prothèse (sauf PTFE) et/ou abcès Et: 1. Hémoculture positive (1 ou au moins 2 si bactérie de la flore cutanée) 2. Ou présence ou persistance de collections/bulles d'air contact de la prothèse à plus de 2 mois de la chirurgie 	 1 signe parmi: 1. Fièvre, frissons, hémorragie sur fistule prothétodigestive ou rupture 2. Douleur localisée 3. Érythème ou tuméfaction locale 4. Fistule productive 5. Non intégration de la prothèse (sauf PTFE) et/ou abcès Ou présence ou persistance de collections/bulles d'air contact de la prothèse à plus de 2 mois de la chirurgie Ou CRP > 10 mg/L ou hyperleucocytose > 10 000 mm³

Microbiologie infections prothèses vasculaires

- Staphylococcoques à coagulase négative
- 2. Staphylococcus aureus
- 3. Entérobactéries
- 4. Pseudomonas
- 5. Entérocoques
- 6. Candida
- 7. Autres

Polymicrobien dans 20% des cas

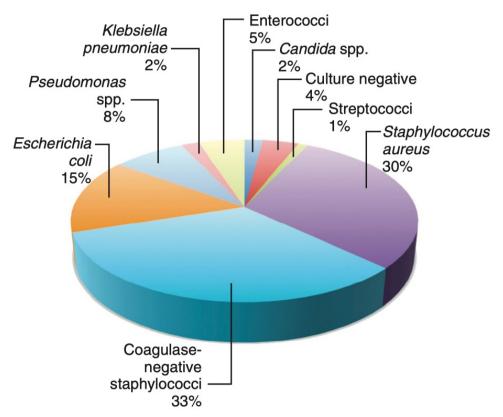
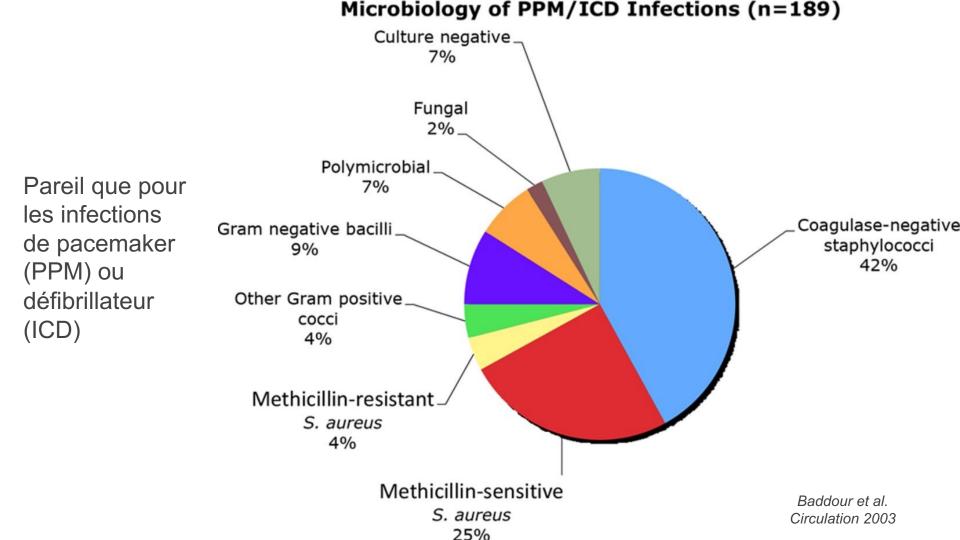
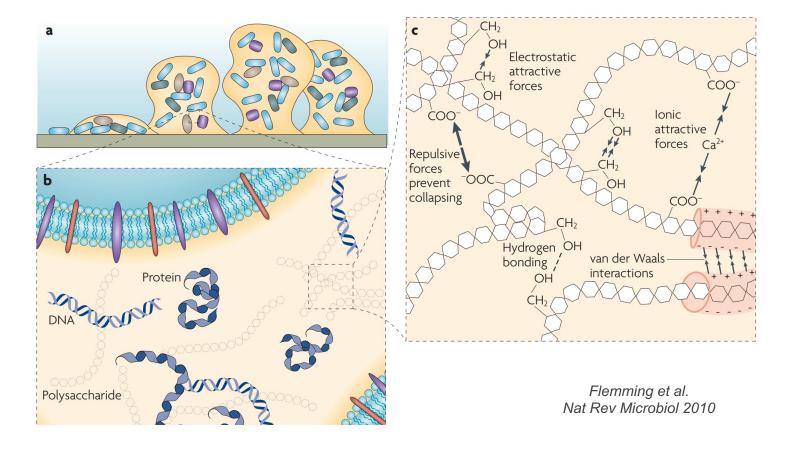




FIG. 82.9 Microbiology of prosthetic vascular graft infections (intraoperative culture results from 119 patients, 68 with aortoiliofemoral and 51 with extracavitary graft infections). (Data from Bandyk DF, Novotney ML, Back MR, et al. Expanded application of in situ replacement for prosthetic graft infection. J Vasc Surg. 2001;34:411–420.)

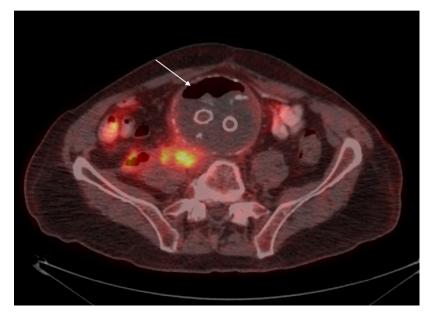
Biofilm

Surtout certaines espèces : **Staphylococcus**, **Pseudomonas**...

Biofilm = Polysaccharides + protéines + ADN (interactions physicochimiques)

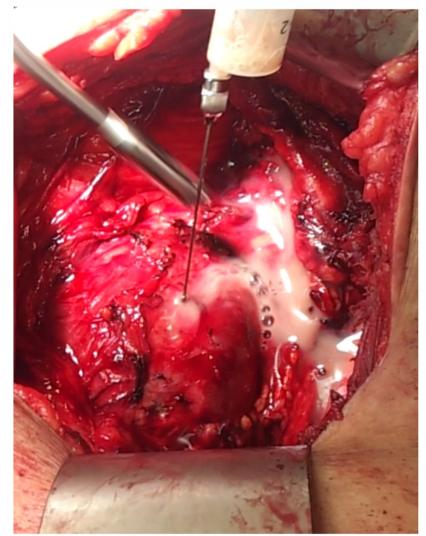
Diagnostic microbiologique

Hémocultures (positives dans 34% des cas)


Ponction de collection périprothétique (pas toujours réalisable)

Prélèvement opératoires +++

Idéalement au moins 5 prélèvements (prélèvement de chaque zone anastomotique, de la partie médiale de la prothèse, et périprothétiques)


Vortex pots avec billes / sonication 5 jours d'incubation avec les bactéries aérobies et 14 jours d'incubation pour les bactéries anaérobies

Prélèvements opératoires

Van Hemelrijck et al. Vessel Plus 2022

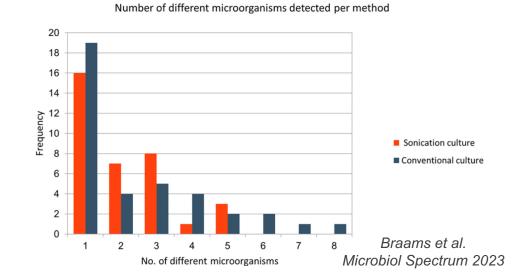
Aspiration pus au niveau du sac anévrysmal (aorte abdominale)

Diagnostic microbiologique: sonication?

Sonication

Ultrasons à fréquence et intensité basses pour décoller biofilm (sans tuer les bactéries)

Mais risque potentiel de contamination


Diagnostic microbiologique: sonication?

Intérêt sonication discuté

Sur 57 échantillons (40 patients), sonication détectait des bactéries supplémentaires dans 16% des cas.

Difficile de conclure

Episodes (N = 40)		Grafts (<i>N</i> = 57)		Cultured causative microorganisms $(N = 107)$ and contaminants $(N = 26)$		
Method	Positive results/VGEI ^a	Negative results/non-VGEI ^a	Positive results/VGEI ^a	Negative results/non-VGEI ^a	Causative m.o./total causative m.o.	Contamination rate (contaminants/total m.o. per method)
Conventional culture	26/32	5/8	34/44	8/13	90/107	15/105 (14%)
Sonication culture	26/32 ^b	7/8 ^b	33/44 ^b	13/13 ^b	71/107 ⁶	11/82 (13%) ^b

^aTotal of 40 (non)infection episodes of 36 patients, including 4 reoperations.

^bContaminants excluded; cutoff value of <5 CFU.

^cN, number; VGEI, vascular graft and endograft infection; m.o., microorganisms.

Diagnostic microbiologique

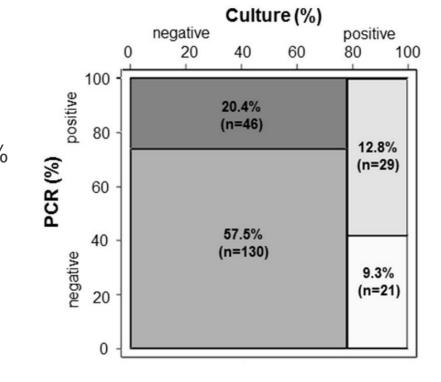
Bactéries de croissance difficile potentiellement sous diagnostiquées

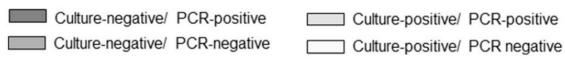
Exemple:

Campylobacter fetus

Nécessite atmosphère spécifique, microaérophilie (6% O2, 7% CO2, 7% H2, and 78% N2)

> Tinévez et al. Emerging Infect Dis 2023


infections and analysis of 45 patients with Campylon		ections in a multicenter retrosp	ective study on vascular
infections and endocarditis caused by Campylobacter	rspp., ⊢rance"		
			Vascular graft or
Characteristic	Vascular infection	Native vascular infection	endograft infection


vascular injection	native vascular infection	endograft infection
45 (100)	30 (66.7)	15 (33.3)
69.5 (61.2-81.3)	69.5 (61.8–81.3)	70 (62–81)
36 (80)	23 (76.7)	13 (86.7)
9 (20)	7 (23.3)	2 (13.3)
30 (66.7)	17 (56.7)	13 (86.7)
7 (15.6)	6 (20)	1 (6.7)
5 (11.1)	4 (13.3)	1 (6.7)
1 (2.2)	1 (3.3)	O ,
2 (4.4)	2 (6.7)	0
, ,	, ,	
11 (24.4)	9 (30)	2 (13.3)
10 (22.2)	8 (26.7)	2 (13.3)
12 (26.7)	8 (26.7)	4 (26.7)
5 (11.1)	4 (13.3)	1 (3.3)
11 (24.4)	8 (26.7)	3 (20)
9 (20)	5 (16.7)	4 (26.7)
2 (4.4)	2 (6.7)	0
11 (24.4)	6 (20)	5 (33.3)
7 (15.6)	6 (20)	1 (6.7)
32 (71.1)	24 (80)	8 (53.3)
1 (2.2)	1 (3.3)	`0 ´
4 (8.9)	3 (10)	1 (6.7)
10 (22.2)	6 (20)	4 (26.7)
6 (13.3)	5 (16.7)	1 (3.3)
23 (51.1)	16 (53.3)	7 (46. 7)
3 (6.7)	3 (10)	`0
4 (8.9)	2 (6.7)	2 (13.3)
·		
36 (80)	23 (76.7)	13 (86.7)
5 (11.1)	4 (13.3)	1 (3.3)
4 (8.9)	3 (10)	1 (3.3)
	45 (100) 69.5 (61.2–81.3) 36 (80) 9 (20) 30 (66.7) 7 (15.6) 5 (11.1) 1 (2.2) 2 (4.4) 11 (24.4) 10 (22.2) 12 (26.7) 5 (11.1) 11 (24.4) 9 (20) 2 (4.4) 11 (24.4) 7 (15.6) 32 (71.1) 1 (2.2) 4 (8.9) 10 (22.2) 6 (13.3) 23 (51.1) 3 (6.7) 4 (8.9) 36 (80) 5 (11.1)	45 (100) 30 (66.7) 69.5 (61.2-81.3) 69.5 (61.8-81.3) 36 (80) 23 (76.7) 9 (20) 7 (23.3) 30 (66.7) 17 (56.7) 7 (15.6) 6 (20) 5 (11.1) 4 (13.3) 1 (2.2) 1 (3.3) 2 (4.4) 2 (6.7) 11 (24.4) 9 (30) 10 (22.2) 8 (26.7) 12 (26.7) 8 (26.7) 5 (11.1) 4 (13.3) 11 (24.4) 8 (26.7) 9 (20) 5 (16.7) 2 (4.4) 2 (6.7) 11 (24.4) 6 (20) 7 (15.6) 6 (20) 32 (71.1) 24 (80) 1 (2.2) 1 (3.3) 4 (8.9) 3 (10) 10 (22.2) 6 (20) 6 (13.3) 5 (16.7) 23 (51.1) 16 (53.3) 3 (6.7) 3 (10) 4 (8.9) 2 (6.7) 36 (80) 23 (76.7) 5 (11.1) 4 (13.3)

Méthodes moléculaires ?

PCR ARNr 16S?

- PCR pos / culture nég = 20.4%
- PCR nég / culture pos = 9.3%

l.

FIGURE 3 | Accuracy of broad-range PCR compared to conventional culture in 226 intraoperative clinical specimens from 60 patients with confirmed vascular graft infections. PCR, polymerase chain reaction.

Ajdler-Schaeffler et al. Frontiers Med 2018

Méthodes moléculaires ?	Species in culture-negative, PCR-positive species ^b	n	(%)
	Staphylococcus epidermidis	21	(30)
	Streptococcus spp.	9	(13)
	Enterobacter spp.	4	(6)
PCR pos / culture nég	Corynebacterium spp.	4	(6)
1 of poor caltare neg	Klebsiella spp.	4	(6)
	Citrobacter freundii	3	(4)
Surtout Staphylococcus epidermidis	Pseudomonas aeruginosa	3	(4)
Carte at Ctapriff Coole opinion maio	Salmonella enterica	3	(4)
	Proteus mirabilis	2	(3)
Quelques espèces rares (ex. anaérobies	Raoutella spp.	2	(3)
comme Bacteroides, Dialister, Fusobacterium)	Bacteriodes xylanisolvens	1	(1)
	Dialister invisus	1	(1)
	Escherichia coli	1	(1)
	Escherichia fergusonii	1	(1)
	Fusobacterium nucleatum	1	(1)
	Listeria innocua	1	(1)
	Mycobacterium intracellulare	1	(1)
	Pasteurella multocida	1	(1)
	Pluralibacter pyrinus	1	(1)
	Propionibacterium acnes	1	(1)
	Shigella spp.	1	(1)
A: 11 O I M	Yokenella spp.	1	(1)
Ajdler-Schaeffler et al. Frontiers Med 2018	Polymicrobial	2	(3)
	Total	69	(100)

Méthodes moléculaires ?

 Table 1

 Lawsonella clevelandensis vascular infection cases.

Case	Age, Sex	Comorbidities	Microbiologic diagnosis	Culture data	Antimicrobial therapy	Outcome
1 ^a	65, Male	AAA repair with graft, umbilical hernia s/p repair, coronary artery disease s/p CABG	16S rRNA gene sequencing	Negative aerobic and anaerobic peripheral blood cultures	IV Vancomycin and PO doxycycline for 6 weeks followed PO doxycycline and cefadroxil for 3 months then lifeline PO doxycycline suppression	Resolution of infection
2	65, Male	Hyperlipidemia, tobacco dependance	16S rRNA gene sequencing	Negative aerobic and anaerobic peripheral blood cultures	Daptomycin, ertapenem, cefepime, and metronidazole. After graft removal and replacement, patient was transitioned to ertapenem for 6 weeks, followed by lifelong amoxicillin-clavulanate suppressive therapy	Resolution of infection
3	65, Female	Bicuspid aortic valve s/p replacement with St. Jude AV with Hemashield patch aortic root enlargement, complete heart block and ventricular tachycardia s/p dual chamber ICD, and recurrent sternal wound infections	16S rRNA gene sequencing	Negative aerobic and anaerobic peripheral blood cultures	IV ceftriaxone and vancomycin for 4 weeks followed by post-operative IV vancomycin and ceftriaxone	Death
4 ^b	70, Male	Hypertension, AAA, asthma, transient ischemic attacks, and infected native aortic aneurysm	16S rRNA gene sequencing	Negative aerobic and anaerobic cultures of intra-abdominal fluid aspirate	Teicoplanin and metronidazole for 9 days then transitioned to PO amoxicillin-clavulanate after surgical intervention	Death one month after surgical intervention

^aAbbreviations: AAA, abdominal aortic aneurysm; S/P, status post; CABG, coronary artery bypass graft surgery; IV, intravenous; PO, oral; AV, aortic valve; ICD, implantable cardiac defibrillator.

Séries de cas d'infections à *Lawsonella clevelandensis* (anaérobie strict) diagnostiquées par PCR ARNr 16S

Méthodes moléculaires ?

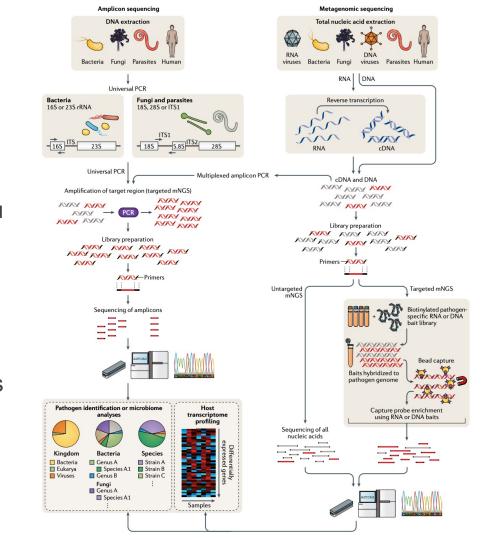
An unexpected case of Bartonella alsatica prosthetic vascular graft infection

Puges et al. Infect Drug Resist 2019

Quelques cas publiés diagnostiqués uniquement par ARNr 16S

Infection à *Bartonella alsatica* prothèse aorto bifémorale (sérologie positive à *B. henselae* et *B. quintana*: réaction croisée)

B. alsatica associée aux lapins (patient = chasseur)


Métagénomique?

Plus sensible que PCR ARNr 16S actuellement réalisée en technique Sanger

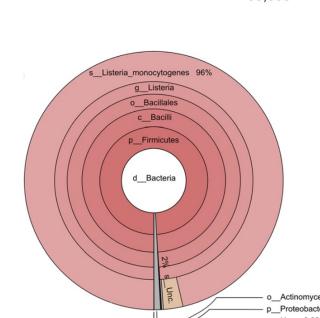
Soit ciblée (amplification d'ARNr 16S ou 18S ou ITS2 préalable): on obtient des dizaines de milliers de séquences du gène d'intérêt (identification de la bactérie)

Soit non-ciblée: séquençage de tous les ADN présents dans l'échantillon (identification bactérie + gènes de résistance ou de virulence)

> Chiu et al. Nat Rev Genetics 2019

Métagénomique ?

Peu de données dans la littérature


Un cas décrit 9 mois après pose endoprothèse aorte abdominale

Hémocultures négatives

métagénomique

Prélèvements per-opératoires positifs à Listeria monocytogenes en culture (10 jours d'incubation) et par technique de

b

5,509,950

3,498,264

3,256,372

3,026,609

2,956,833

181

3.141

66.451

65.805

3

5,509,950 3,407,191

3,202,100

g Dyadobacter 0.002%

of reads in row sequence dataset

of reads after removal of replicates

of reads after quality filter

of F-R pairs

Unclassified^a

Human^a

Viruses^a

Bacteria^a

Listeriaa

Fungi^a

Foulex et al. BMC Microbiol 2019

Traitement

- Chirurgie d'exérèse +++
 idéalement retrait complet de la prothèse
 reconstruction (in situ en sus-inguinal, à distance du site infecté en sous-inguinal)
- Antibiothérapie

TABLE 82.7 Comparison of In Situ Reconstruction Versus Extraanatomic Bypass Revascularization for Management of Prosthetic Vascular Graft Infection

vs. 3% with autogenous vein replacement

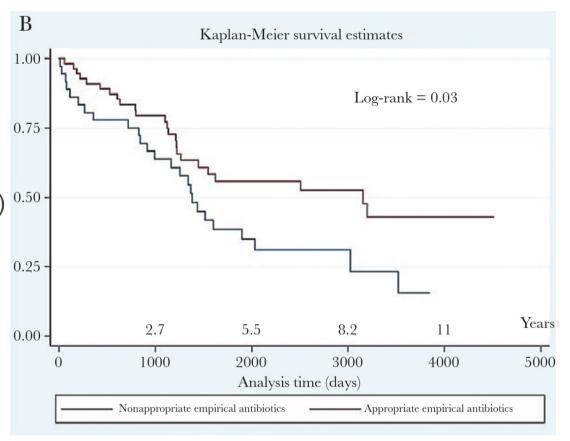
	Management of Prostnetic Vascular Graft Infection				
IN SITU RECONSTRUCTION E		EXTRAANATOMIC BY	EXTRAANATOMIC BYPASS REVASCULARIZATION		
ADVANTAGES DISADVANTAGES A		ADVANTAGES	DISADVANTAGES		
	Reduced rate of lower extremity amputation Elimination of the need for a second operation Avoidance of creating an aortic stump that could blow out in future Lack of anatomic limitations to placement Shorter operating time when rifampin-bonded prosthetic grafts or arterial allografts are used Reinfection rate: 10% with prosthetic graft reconstruction	Theoretical risk of increasing chances of new graft infection by placing new prosthetic material or allograft in a previously infected tissue bed	Theoretical reduced risk of new graft infection by avoiding placement of a new prosthetic material or allograft in a previously infected tissue bed	Need for a second procedure if staged operative strategy is used Reduced limb salvage rates (20%–30% lower extremity amputation rate) Aortic stump blowout (20%) 20% reinfection rate	

Table 2. Surgical Management of Intra-Abdominal Vascular Graft Infections: Options and Advantages and **Disadvantages**

Advantages	Disadvantages
Extra-anatomic bypass, revascularization, graft excision	•
Theoretical lower risk of infection because excision of infected graft	Two-stage procedure, longer operating time
and no reconstruction in infected area	Difficulty in establishing revascularization route
Can be used for MRSA, Pseudomonas, multiple antibiotic resistance	Conduit failure, lower patency rate
	Amputation of lower extremities (20%–30%)
	Decreased blood supply to inferior mesenteric and internal iliac arteries
	Aortic stump infection, possible blowout (10%–20%)
n situ reconstruction: cryopreserved or fresh arterial allograft	
Can be used in some emergency situations, including aortoenteric fistula	Long-term patency lower than for rifampin-bonded or venous autografts because of rejection
Lower infection rate than rifampin-bonded grafts and extra- anatomic bypass	Not suitable for MRSA, <i>Pseudomonas</i> , or multiple antibiotic drug resistance
Shorter surgical time than venous autografts	Potential difficulty with appropriate anatomic size and shape of graft
/enous autograft	
Lowest infection rate	Longer operating time than arterial allograft
Longer patency rate than arterial allograft	Patients with history of DVT not candidates
Can be used in some aortoenteric fistulae	Not suitable for MRSA, Pseudomonas, or multiple antibiotic drug resistance
Rifampin-bonded synthetic graft	
Can be used in emergency surgery	Higher infection rate than arterial allografts or venous autografts
Shorter operating time than for extra-anatomic, arterial allograft, venous autograft	Not suitable for MRSA, <i>Pseudomonas</i> , multiple drug resistance
Lowest amputation and early mortality rates	Potential long-term development of rifampin resistance
DVT indicates deep vein thrombosis; and MRSA, methicillin-resistant St	taphylococcus aureus.

Wilson et al. Circulation 2016

Tableau II. Propositions d'antibiothérapie probabiliste des IPV.


Dosage et voie				
Sepsis avec ou sans colonisation ou infection à entérobactéries BLSE dans les 3 mois Ou choc septique sans colonisation ou infection à entérobactéries BLSE dans les 3 mois				
200 mg/kg/j en perfusion continue après dose de charge de 4 g i.v. (max 16 g/j)				
10 mg/kg/j i.v. en 1 prise				
30 mg/kg/j i.v. sur 30 min				
les 3 mois à entérobactéries BLSE				
100 mg/kg/j en 3 perfusions de 4 h				
10 mg/kg/j i.v. en une prise				
30 mg/kg/j i.v. sur 30 min				

BLSE : bêtalactamase à spectre étendu ; i.v. : intraveineuse.

^{*} Si allergie à la pénicilline : céfépime et métronidazole

^{**} Alternative : vancomycine.

Mortalité plus importante si antibiothérapie empirique inappropriée (période de 10 ans) 0.50

Sixt et al.
Open Forum Infectious
Diseases 2022

relapses. This may suggest that more than antibiotic therapy, it may be surgery that could prevent relapse. Further testing for specific relapsing factors is needed.

To be appropriate, empirical antibiotic therapy has to be effective against all of the involved pathogens. In our study, *S aureus* was the most frequently found bacteria in blood cultures and intraoperative samples, which may be in a third of cases resistant to methicillin. This microbiological distribution is also observed in several other studies [14, 19, 33].

In light of these results, empirical treatment should be effective against MRSA. Daptomycin may thus be of interest, since it has been shown to prevent and eradicate biofilm in a subcutaneous rat pouch model of staphylococcal infection [34]. Moreover, high doses of daptomycin have been demonstrated to be safe [35], and daptomycin is associated with favorable outcomes in the treatment of VGI [36]. Considering that polymicrobial and multidrug-resistant gram-negative bacilli are often found

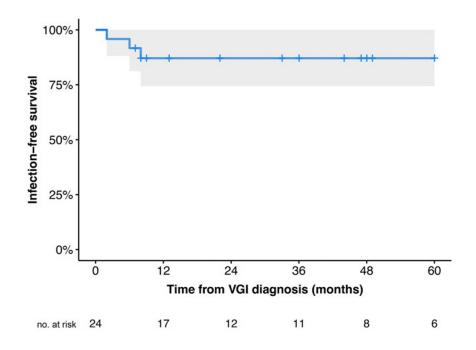
in VGI, as previously reported [26], anti-staphylococcal treatment has to be associated with a broad-spectrum antibiotic active against gram-negative bacilli (eg, piperacillin-tazobactam or cefepime). Unfortunately, few fungal species were found in our work, but they were not systematically the subject of testing.

Our data thus support the recent French recommendations suggesting the use of daptomycin in combination with piperacillin-tazobactam or cefepime as empirical antibiotic therapy [1, 12].

Since the administration of empirical antibiotic therapy was a key prognostic factor, our work raises the question of timing. Indeed, the positive impact of systematic antibiotic use could be counterbalanced by a lower likelihood of bacterial identification on samples if treatment is started before surgery. In a study by Legout et al [19], there was no difference in culture positivity between patients who did or did not receive antibiotic therapy 48 hours before surgery. For how long before surgery

Si retrait prothèse impossible

Si maintient de tout ou partie du matériel infecté = Traitements antibiotiques longs (à vie?)

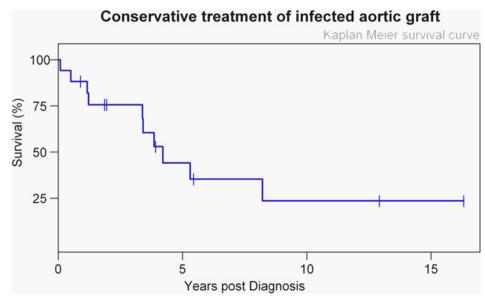

Etude sur les prothèses d'aorte thoracique : Mortalité de 8% à 6 mois

Antibiothérapie médiane = 13 mois dans cette étude rétrospective

Median treatment duration: 13 months (IQR 15), of which 6 months intravenously (IQR 6)

Outcome:

- 6-month mortality rate: 8%
- Cure rate: 67%
- Relapse rate: 0%


Kouijzer et al. European Journal of Cardio-Thoracic Surgery 2023

Si retrait prothèse impossible

Si maintient de tout ou partie du matériel infecté = Traitements antibiotiques longs (à vie?)

Moins bons résultats dans une autre étude sur les prothèses d'aorte abdominale

Pourtant 14 patients sur 17 ont reçu des antibiotiques à vie (Augmentin n=6, Augmentin+ciprofloxacine n=3, Cloxacilline n=3, Acide fusidique+ciprofloxacine n=1, pénicilline V n=1)

Figure 1. A Kaplan Meier plot of the survival of 17 patients diagnosed with an abdominal aortic graft infection who were managed without graft explantation.

Maze et al. European Journal of Vascular and Endovascular Surgery 2023

Tableau III. Propositions de traitement pour les IPV à staphylocoques lorsque la prise en charge chirurgicale a été optimale.

	IPV à staphylocoques méti-S	IPV à staphylocoques méti-R
Traitement préopératoire	Cloxacilline i.v. 2 g i.v. sur 30 min puis 150 mg/kg/j i.v.s.e.*	Daptomycine 10 mg/kg/j i.v. en 1 seule dose
Traitement postopératoire	Cloxacilline i.v. mêmes doses Puis relais per os dès stabilisation clinique par rifampicine et fluoroquinolones	Daptomycine mêmes doses Puis relais per os dès stabilisation clinique par rifampicine associée à une molécule selon antibiogramme

^{*} i.v.s.e.: intraveineuse seringue électrique.

Tableau IV. Propositions de durée de traitement des IPV à partir de la reprise chirurgicale.

Ablati	on de la totalité d	Rétention des i	mplants infectés	
Non remplacé	Remplacé par allogreffe artérielle ou autogreffe veineuse	Remplacé par prothèse	Reprise chirurgicale dans le mois suivant la pose de l'implant initial avec grand lavage	Autre situation
2 semaines	4 semaines	6 semaines	12 semaines	6 semaines puis traitement suspensif

Revest et al. La lettre de l'infectiologue 2019

Nouvelles thérapies ?

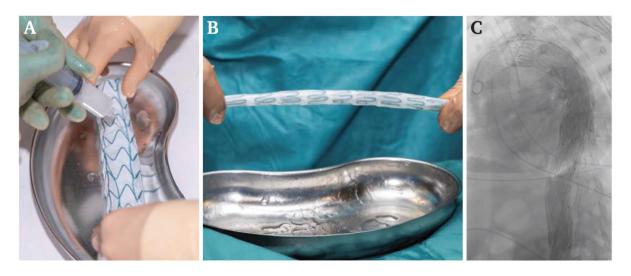
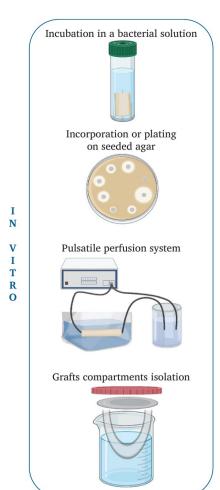
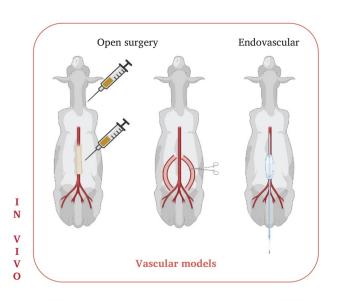


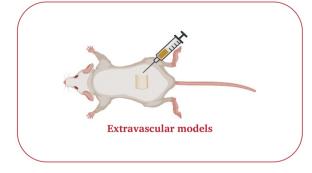
Figure 3. For local endovascular bacteriophage application, two RELAY NBS PLUS stent grafts were released and externally coated with a bacteriophage gel (A) before re-assembly (B) and endovascular placement at the site of the infected stent graft in the thoracic aorta. Final angiography confirmed placement of the bacteriophage covered stent grafts (C).

Bactériophages pour infection à *S. aureus* (prothèse aorte thoracique) : lavage, bactériophages à l'extérieur et à l'intérieur de la prothèse

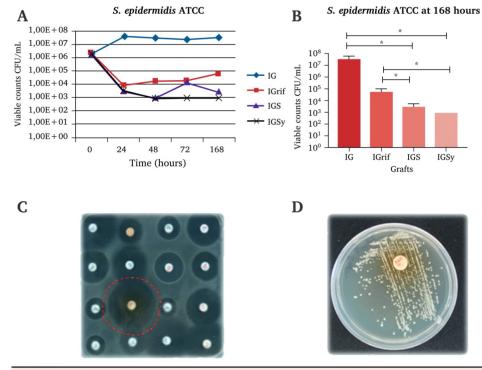
Grambow et al.
EJVES Vascular Forum 2022


Modèles pour étudier les infections prothèse


In vitro:
Surtout incubation
prothèse dans une
suspension bactérienne


In vivo: Surtout extravasculaire (sous cutanné) sur rat ou souris

Permet d'étudier type de prothèse (matériel) ou l'impact de différentes souches bactériennes

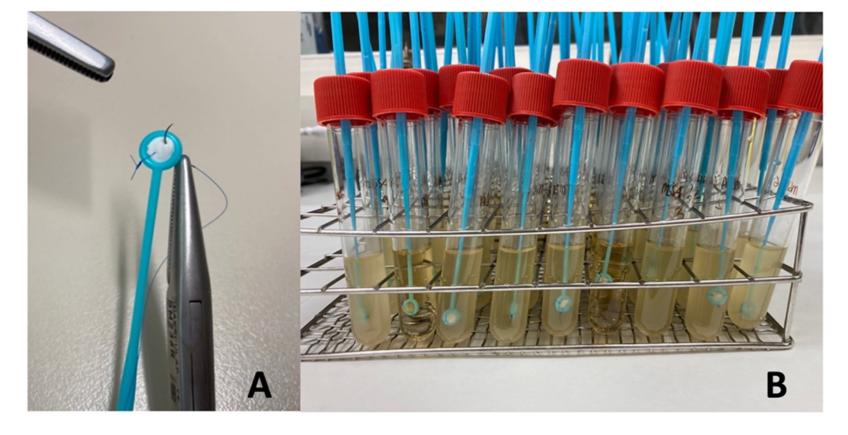

> Puges et al. EJVES Vascular Forum 2022

Modèles in vitro

Berard et al. Eur J Vasc Endovasc Sur 2019

IG IG

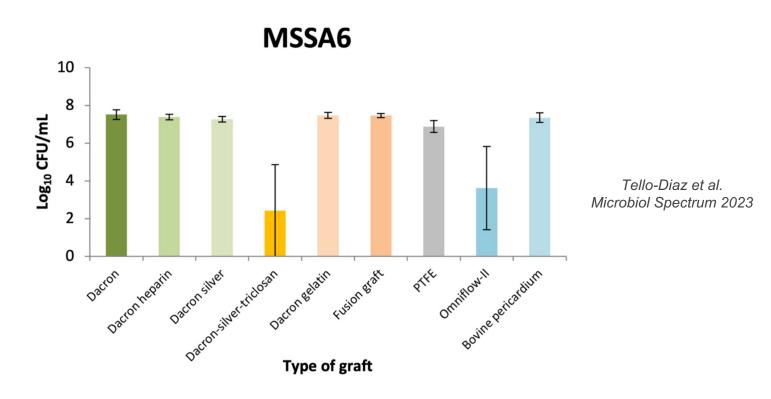
IGrif


IGS

IGSv

Figure 2. Time to kill curves (A) and Wilcoxon paired test at 168 h (B) of the four grafts contaminated *Staphylococcus epidermidis* (*S. epidermidis*) American type culture collection (ATCC). (C) EUCAST testing of 16 antibiotics, a red dotted line surrounds the rifampicin one with a MIC of 0.05 mg/L. (D) Resistance to rifampicin at seven days with a MIC > 512 mg/L. CFU = colony forming unit; IG = Intergard; IGrif = Intergard rifampicin soaked (5000 mg/L); IGS = Intergard Silver. IGSy = Intergard Synergy; MIC = minimum inhibitory concentration.

Prothèses qui contiennent de la rifampicine exposent à la survenue de souches résistantes à la rifampicine en moins de 7 jours


Modèles de biofilm in vitro

Formation biofilm évaluée pour *S. aureus* sur différents types de prothèses

Tello-Diaz et al.
Microbiol Spectrum 2023

Modèles de biofilm in vitro

Moins de biofilm sur Dacron-silver-triclosan et Omniflow-II (collagène+polyester) Néanmoins pas forcément représentatif de la physiopath *in vivo*

Prévention

Antibioprophylaxie (pas de plus de 24h)
Préparation cutanée (antisepsie)

Matériel prothèse?

Deux types:

- PET (polyéthylène téréphtalate) ou polyester Dacron®
- PTFE (polytétrafluoroéthylène) microporeux Même risque d'infection

Meme naque a intection

Prothèses imprégnées d'antibiotiques ?

Pas d'efficacité prouvée En effet, infection survient par voie externe dans 75% (et non par voie hématogène)

> Revest et al. La lettre de l'infectiologue 2019