
JRPI XX^e Journée Régionale de Pathologie Infectieuse

Session Coronavirus Pistes thérapeutiques

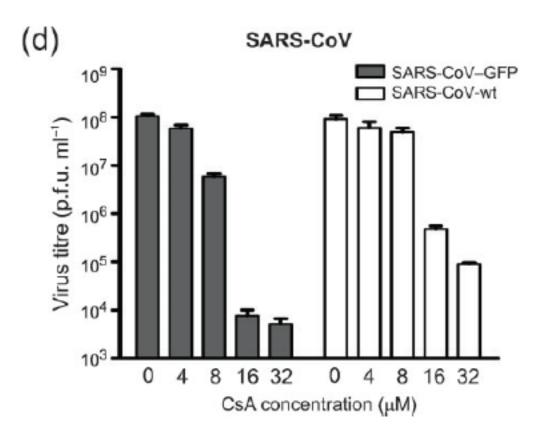
B Guery

Therapeutic challenge for MERS-CoV

- ✓ Antiviral activity
 - Ribavirin
 - Lopinavir
 - Interferon
 - Cyclosporin A
 - Associations
 - Protease inhibition
 - Monoclonal antibodies

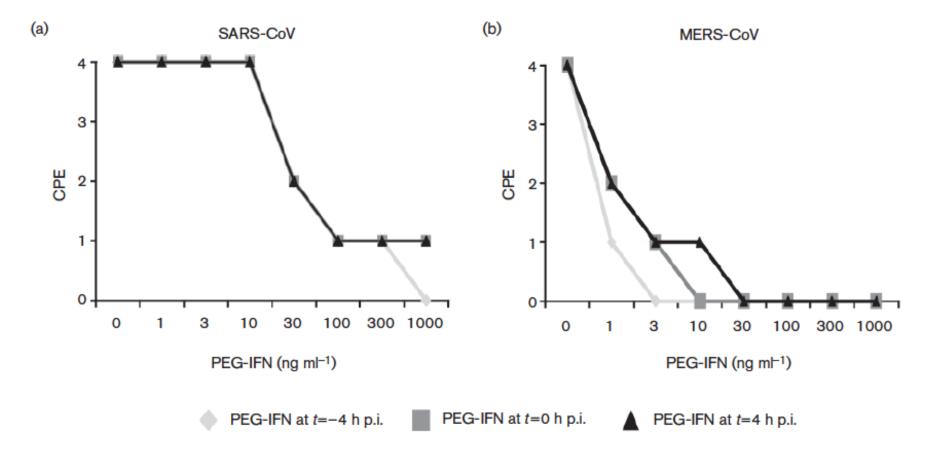
- ✓ Host response modulation
 - Immunogobulins/conv alescent plasma
 - Glucocorticoids
 - Kinase inhibitors

SARS: Systematic Review of Treatment Effects

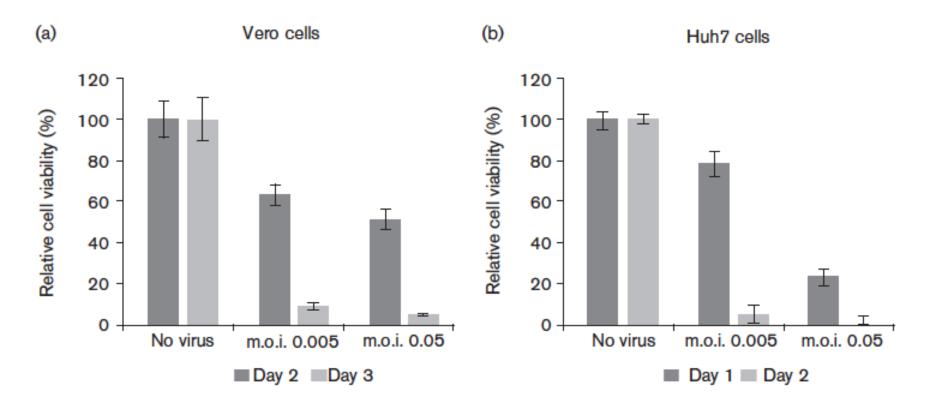

Lauren J. Stockman^{1,2*}, Richard Bellamy³, Paul Garner⁴

Treatment	Inconclusive ^a	Possible Harm ^a	Total Studies with Evidence (English and Chinese) ^b
Ribavirin	26	4	30
Corticosteroid	25	4	29
LPV/r	2	0	2
IFN-α	3	0	3
Convalescent plasma or Immunoglobulin	7	0	7

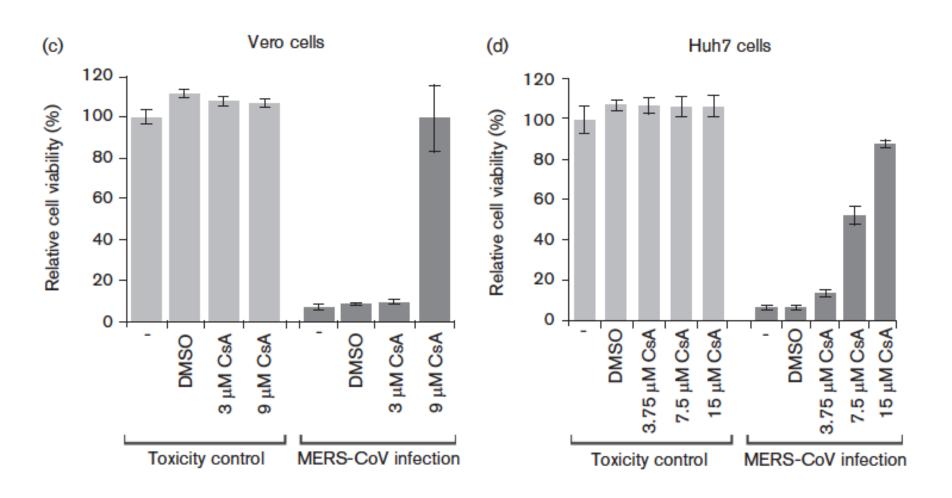
^aStudies were classified into six categories, but there were four categories without any studies: "possible benefit," "possible harm," "definite benefit," "definite harm" (see Box 1). ^bStudies totalled 54; some reported on more than one drug.


Cyclosporin A inhibits the replication of diverse coronaviruses

Adriaan H. de Wilde,¹ Jessika C. Zevenhoven-Dobbe,¹ Yvonne van der Meer,¹ Volker Thiel,^{2,3} Krishna Narayanan,⁴ Shinji Makino,⁴ Eric J. Snijder¹ and Martijn J. van Hemert¹



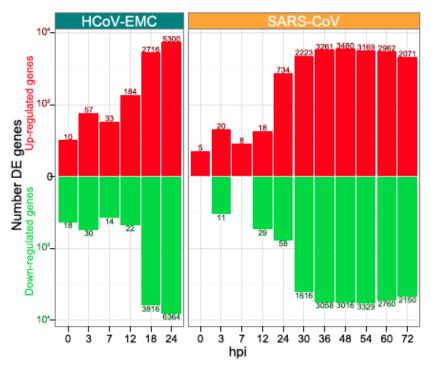
MERS-coronavirus replication induces severe *in vitro* cytopathology and is strongly inhibited by cyclosporin A or interferon- α treatment


Adriaan H. de Wilde,¹ V. Stalin Raj,² Diede Oudshoorn,¹ Theo M. Bestebroer,² Stefan van Nieuwkoop,² Ronald W. A. L. Limpens,³ Clara C. Posthuma,¹ Yvonne van der Meer,¹ Montserrat Bárcena,³ Bart L. Haagmans,² Eric J. Snijder¹ and Bernadette G. van den Hoogen²

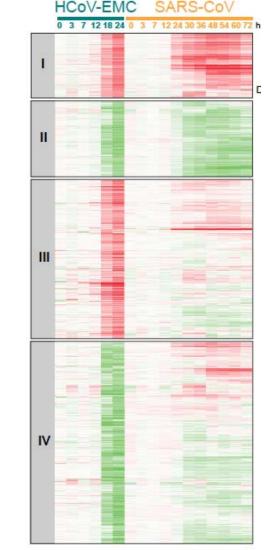
Journal of General Virology (2013), 94, 1749–1760

Journal of General Virology (2013), 94, 1749-1760

Journal of General Virology (2013), 94, 1749-1760

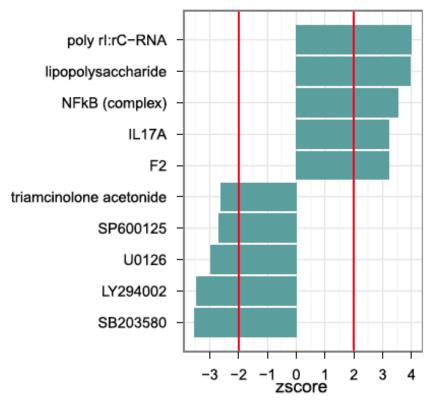

MERS-coronavirus replication induces severe *in vitro* cytopathology and is strongly inhibited by cyclosporin A or interferon- α treatment

Adriaan H. de Wilde,¹ V. Stalin Raj,² Diede Oudshoorn,¹ Theo M. Bestebroer,² Stefan van Nieuwkoop,² Ronald W. A. L. Limpens,³ Clara C. Posthuma,¹ Yvonne van der Meer,¹ Montserrat Bárcena,³ Bart L. Haagmans,² Eric J. Snijder¹ and Bernadette G. van den Hoogen²


- ✓ Cyclosporin A is an inhibitor of HCoV-EMC replication in cell culture.
- HCoV-EMC was found to be 50-100 times more sensitive to interferon-alpha (IFN-α) treatment than SARS-CoV
- ✓ Important implications for the treatment of HCoV-EMCinfected patients.

Cell Host Response to Infection with Novel Human Coronavirus EMC Predicts Potential Antivirals and Important Differences with SARS Coronavirus

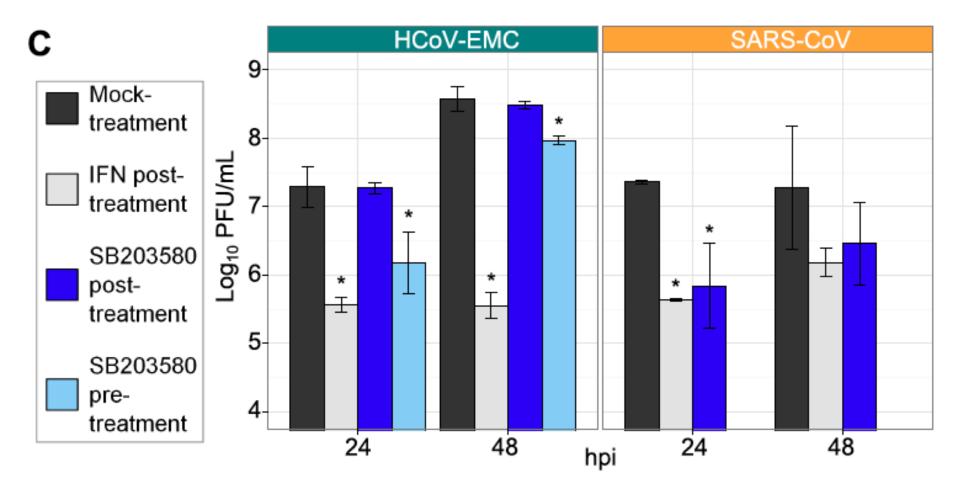
Laurence Josset,^a Vineet D. Menachery,^{b,c} Lisa E. Gralinski,^{b,c} Sudhakar Agnihothram,^{b,c} Pavel Sova,^a Victoria S. Carter,^a Boyd L. Yount,^{b,c} Rachel L. Graham,^{b,c} Ralph S. Baric,^{b,c} Michael G. Katze^a



- ✓ HCoV-EMC infection, with 6,532 DE genes at 18 hpi and 11,664 genes at 24 hpi
- ✓ SARS-CoV induced changes of only 792 genes at 24 hpi with maximum changes at 48 and 54 hpi of 6,496 and 6,498 genes,

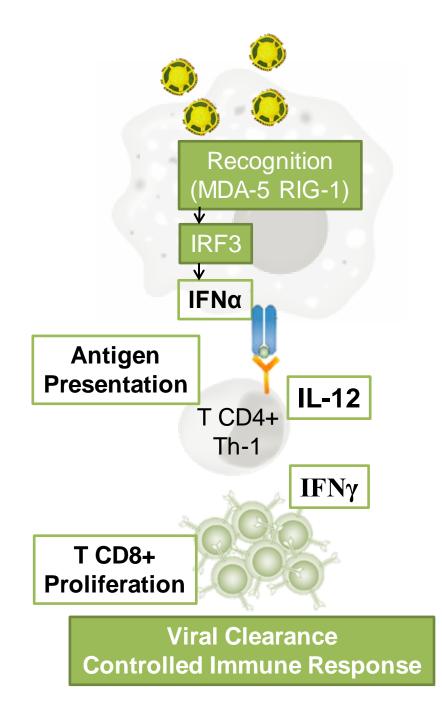
✓ HCoVEMC induced drastic changes in the host transcriptome with 12,392 DE genes at 18 hpi and/or 24 hpi May/June 2013 Volume 4 Issue 3 e00165-13 Cell Host Response to Infection with Novel Human Coronavirus EMC Predicts Potential Antivirals and Important Differences with SARS Coronavirus

Laurence Josset,^a Vineet D. Menachery,^{b,c} Lisa E. Gralinski,^{b,c} Sudhakar Agnihothram,^{b,c} Pavel Sova,^a Victoria S. Carter,^a Boyd L. Yount,^{b,c} Rachel L. Graham,^{b,c} Ralph S. Baric,^{b,c} Michael G. Katze^a


 ✓ Top 5 activated upstream regulators and top 5 inhibited upstream regulators of the early signature.

mBio

- The prediction of activation state is based on the global direction of changes of the 207 genes throughout infection with HCoV-EMC.
- ✓ Red lines depict the limit of significance


Cell Host Response to Infection with Novel Human Coronavirus EMC Predicts Potential Antivirals and Important Differences with SARS Coronavirus

Laurence Josset,^a Vineet D. Menachery,^{b,c} Lisa E. Gralinski,^{b,c} Sudhakar Agnihothram,^{b,c} Pavel Sova,^a Victoria S. Carter,^a Boyd L. Yount,^{b,c} Rachel L. Graham,^{b,c} Ralph S. Baric,^{b,c} Michael G. Katze^a

SB203580, an inhibitor of p38 MAPK,

mBio

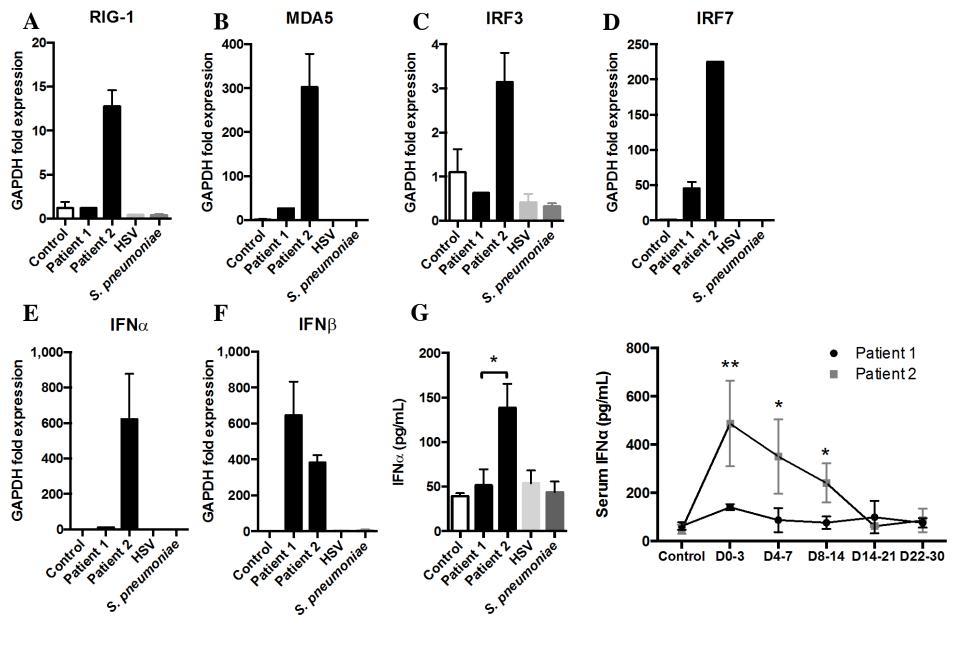
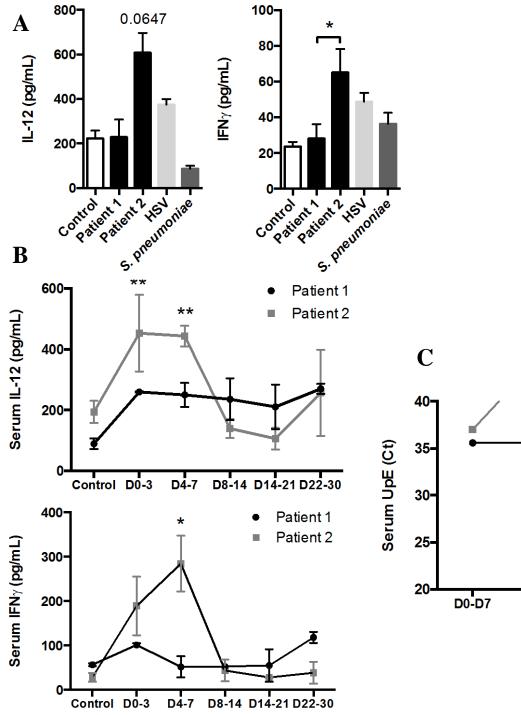
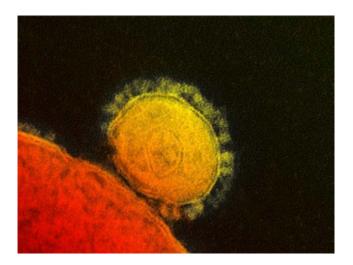




Figure 1

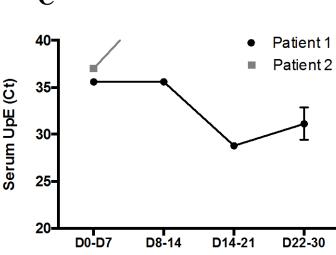
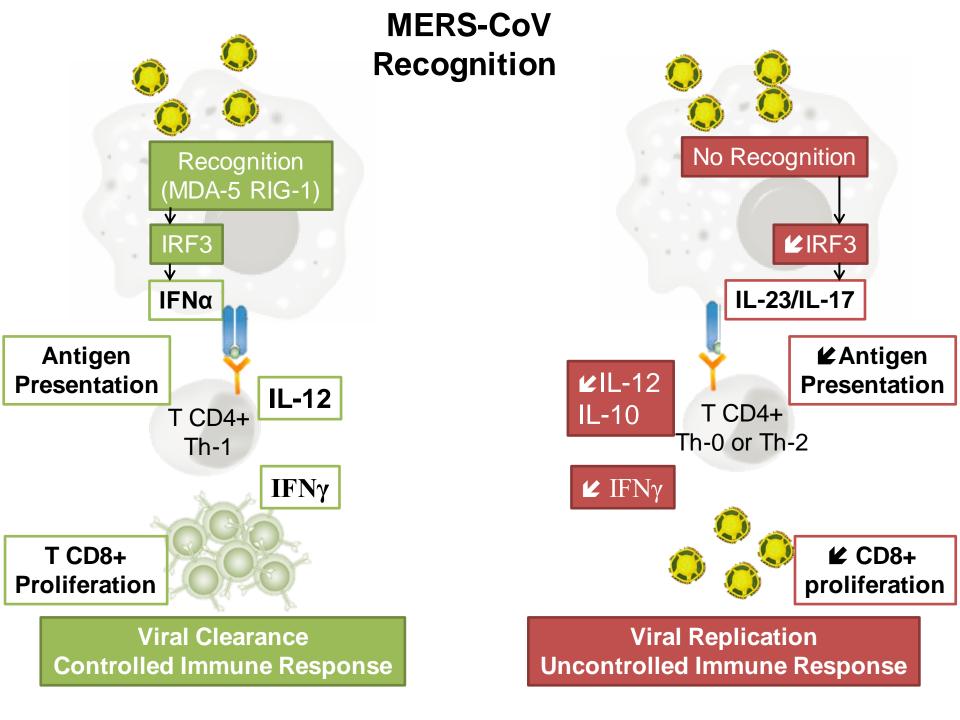
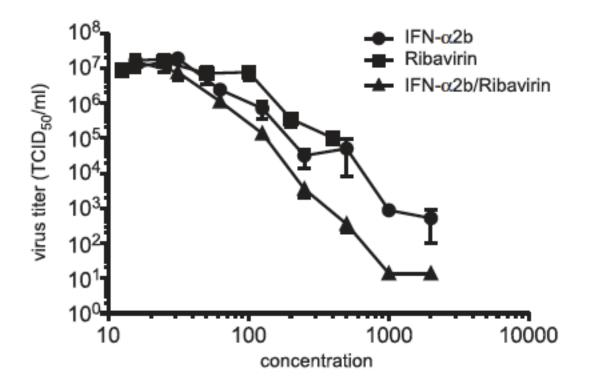




Figure 2

Inhibition of novel β coronavirus replication by a combination of interferon- α 2b and ribavirin

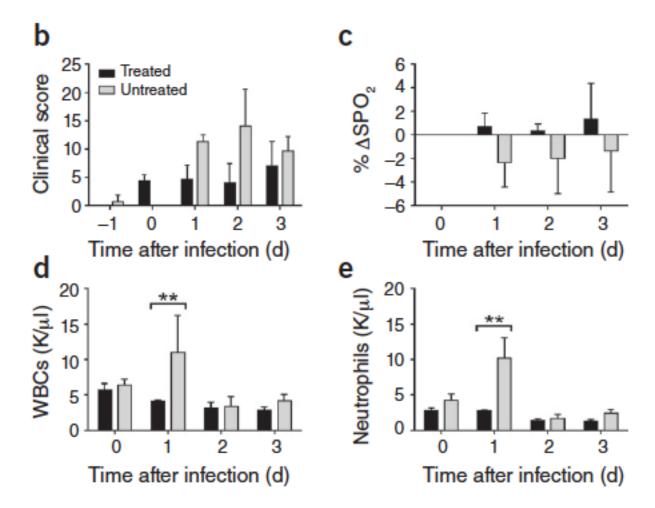
Darryl Falzarano¹, Emmie de Wit¹, Cynthia Martellaro¹, Julie Callison¹, Vincent J. Munster² & Heinz Feldmann^{1,3}


Vero cells

LLC-MK2 cells

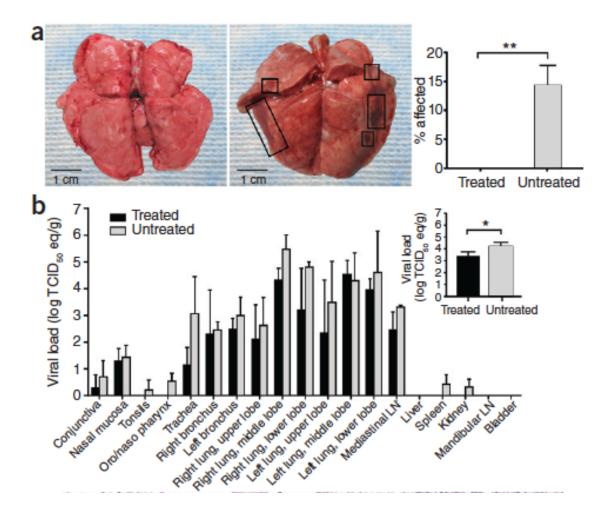
SCIENTIFIC REPORTS | 3 : 1686 | DOI: 10.1038/srep01686

Inhibition of novel β coronavirus replication by a combination of interferon- α 2b and ribavirin


Darryl Falzarano¹, Emmie de Wit¹, Cynthia Martellaro¹, Julie Callison¹, Vincent J. Munster² & Heinz Feldmann^{1,3}

SCIENTIFIC REPORTS | 3 : 1686 | DOI: 10.1038/srep01686

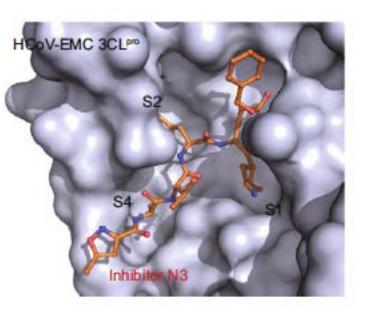
Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV–infected rhesus macaques


Darryl Falzarano¹, Emmie de Wit¹, Angela L Rasmussen², Friederike Feldmann³, Atsushi Okumura², Dana P Scott³, Doug Brining³, Trenton Bushmaker⁴, Cynthia Martellaro¹, Laura Baseler^{1,5}, Arndt G Benecke^{2,6}, Michael G Katze^{2,7}, Vincent J Munster⁴ & Heinz Feldmann^{1,8}

Received 24 May; accepted 27 August; published online 8 September 2013; doi:10.1038/nm.3362

Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV–infected rhesus macaques

Darryl Falzarano¹, Emmie de Wit¹, Angela L Rasmussen², Friederike Feldmann³, Atsushi Okumura², Dana P Scott³, Doug Brining³, Trenton Bushmaker⁴, Cynthia Martellaro¹, Laura Baseler^{1,5}, Arndt G Benecke^{2,6}, Michael G Katze^{2,7}, Vincent J Munster⁴ & Heinz Feldmann^{1,8}



Received 24 May; accepted 27 August; published online 8 September 2013; doi:10.1038/nm.3362

The newly emerged SARS-Like coronavirus HCoV-EMC also has an "Achilles' heel": current effective inhibitor targeting a 3C-like protease

Zhilin Ren^{1,2}', Liming Yan¹', Ning Zhang⁴, Yu Guo², Cheng Yang^{2,4}, Zhiyong Lou¹, Zihe Rao^{1,2,3,4⊠}

- Replication of coronavirus requires correct proteolytic processing of the replicase polyprotein by viral proteases, in particular a chymotrypsin-like protease (3CLpro, also known as main protease Mpro).
- Since 3CLpro is unique in the virus but not found in the host cell, this protein is a prominent target for the development antivirals against CoV infections
- Number of inhibitors have been discovered that prohibit the infection of CoV through their action on 3CLpro

Cross-reactive antibodies in convalescent SARS patients' sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests

```
Kwok-Hung Chan <sup>a,f</sup>, Jasper Fuk-Woo Chan <sup>a,f</sup>, Herman Tse <sup>a,b,c,d</sup>,
Honglin Chen <sup>a,b,c,d</sup>, Candy Choi-Yi Lau <sup>a</sup>, Jian-Piao Cai <sup>a</sup>, Alan Ka-Lun Tsang <sup>a</sup>,
Xincai Xiao <sup>e</sup>, Kelvin Kai-Wang To <sup>a,b,c,d</sup>, Susanna Kar-Pui Lau <sup>a,b,c,d</sup>,
Patrick Chiu-Yat Woo <sup>a,b,c,d</sup>, Bo-Jiang Zheng <sup>a,b,c,d</sup>, Ming Wang <sup>e</sup>,
Kwok-Yung Yuen <sup>a,b,c,d,*</sup>
```

- ✓ Seroprevalence study
 - $\checkmark\,$ 94 game-food animal handlers at a wild life market
 - ✓ 28 SARS patients
 - ✓ 152 healthy blood donors
- ✓ Two (2.1%) animal handlers had IF antibody titer of 1:20 against both HCoV-EMC and SARS-CoV with neutralizing antibody titer of <1:10.
- ✓ 17/28 (60.7%) of SARS patients had significant IF antibody titers with 7/28 (25%) having anti-HCoV-EMC neutralizing antibodies at low titers
- ✓ Virulence of SARS-CoV over other betacoronaviruses may boost crossreactive neutralizing antibodies against other betacoronaviruses.
- Conclusions: Convalescent SARS sera may contain cross-reactive antibodies against other betacoronaviruses and confound seroprevalence study for HCoV-EMC.

Therapeutic Options for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) – possible lessons from a systematic review of SARS-CoV therapy

Hisham Momattin^a, Khurram Mohammed^a, Alimuddin Zumla^b, Ziad A. Memish^c, Jaffar A. Al-Tawfiq^{d,*}

Medication	Normal dose Crc I> 50ml/min	Impaired renal function Crcl (20-50 ml/min)	ESRD (Hemodialysis) CrCl< 20ml/min
Ribavirin oral	2000 mg loading dose then	2000 mg loading dose	2000 mg loading dose
	1200mg q8h for 4 days,	then 600 mg po q8h for	then 200mg po q6h for 4
	then 600mg po q8h for 4-6	4 days, 200 mg po q6h	days, then 200mg po
	days	for 4-6 days	q12h
Peg	1.5mcg/kg once per week x	Same dose	Same dose
interferon alfa	2		
2b			
Lopinavir 400 mg/	Lopinavir 400 mg/ ritonavir	Same dose	Same dose
ritonavir 100 mg	100 mg twice daily for 10		
oral	days. May be given in combination with Ribavirin		
convalescent	300- 500 ml of full plasma	Same dose	Same dose
plasma	(3-5 ml/kg) With a rate of		
	2ml/min for one time in day		
	2 of ICU admission.		

Propositions

- Compare Ribavirin+IFN vs either Riba or IFN alone
 - Ribavirin 10mg/kg/8h IV
 - IFN α 2b 5 M IU/kg/16h SC or PEG-IFN
- ✓ Monoclonal antibodies: Dutch and English
- ✓ Convalescent plasma if available
- ✓ Consider may be steroids very early in the disease as well as cyclosporin
 - based on the host response profile
 - Associated to IFN for replication?